Efficacy of botulinum toxins on bruxism: an evidence-based review

Hu Long*, Zhengyu Liao*, Yan Wang, Lina Liao and Wenli Lai

Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.

The objective of this study was to assess the efficacy of botulinum toxins on bruxism. Electronic databases (PubMed, Embase and Science Citation Index), websites (Cochrane Central Register of Controlled Trials and ClinicalTrials.gov) and the literature database of SIGLE (System for Information on Grey Literature in Europe) were searched from January 1990 to April 2011 for randomised controlled trials or nonrandomised studies assessing the efficacy of botulinum toxins on bruxism. There was no language restriction. Through a predefined search strategy, we retrieved 28 studies from PubMed, 94 from Embase, 60 from the Science Citation Index, two ongoing clinical trials and two from the Cochrane Central Register of Controlled Trials. Of these, only four studies met our inclusion criteria and were finally included. Of the four included studies, two were randomised controlled trials and two were controlled before-and-after studies. These studies showed that botulinum toxin injections can reduce the frequency of bruxism events, decrease bruxism-induced pain levels and satisfy patients’ self-assessment with regard to the effectiveness of botulinum toxins on bruxism. In comparison with oral splint, botulinum toxins are equally effective on bruxism. Furthermore, botulinum toxin injections at a dosage of <100 U are safe for otherwise healthy patients. Botulinum toxin injections are effective on bruxism and are safe to use. Therefore, they can be used clinically for otherwise healthy patients with bruxism.

Key words: Botulinum toxins, bruxism, systematic review, tooth clenching, tooth grinding

INTRODUCTION

Bruxism, a diurnal or nocturnal parafunctional activity that includes tooth clenching or grinding, can result in several orofacial lesions, such as tooth wear, periodontal lesions, temporomandibular joint...
disorders and muscle pain. Although several therapeutic modalities have been employed, including
oral splint, medications and behavioral approaches, none has been reported to be fully effective.
Thus, it is of paramount importance to find a more effective therapeutic modality. Recent advances have shown that bruxism is caused by centrally mediated high levels of motor activity in the jaw.
muscles, indicating that reductions in this activity may be helpful. Botulinum toxins, proteases that
block the release of acetylcholine, can ultimately inhibit muscle contraction, rendering them applicable
However, the efficacy of botulinum toxins on bruxism has not been demonstrated.
Thus, we conducted a systematic review of randomised controlled trials and nonrandomised studies assessing the efficacy of botulinum toxins on bruxism.

METHODS

Inclusion criteria for the studies

Types of study

Studies that reported the treatment effects of botulinum toxins on bruxism were included, mainly randomised controlled clinical trials and nonrandomised studies. Studies in which bruxism was induced by other disorders, e.g. brain injury and medications, or complicated by other unrelated systemic diseases, e.g. Huntington’s disease, were excluded. Moreover, studies in which therapy aimed at the treatment of other diseases was used were also excluded.

Types of participant

The participants in the studies suffered from bruxism and were over the age of 18 years.

Long et al.

Types of intervention

The test interventions were botulinum toxin injections and the control interventions were either placebo or other interventional procedures, e.g. oral splint.

Study identification

We searched the electronic databases of PubMed, Embase and Science Citation Index, websites of the Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov, and the literature database of SIGLE (System for Information on Grey Literature in Europe). The search strategies for each of the databases were as follows: (i) PubMed: ['Bruxism' (Mesh) or 'tooth grinding' or 'tooth clenching'] AND ['Botulinum Toxins' (Mesh) or 'botulinum' or 'Botox']; (ii) Embase: ['bruxism' or 'tooth grinding' or 'tooth clenching'] AND ['botulinum' or 'botulinum toxin' or 'Botox']; (iii) Science Citation Index: ['bruxism' or 'tooth grinding' or 'tooth clenching'] AND ['botulinum' or 'botulinum toxin' or 'Botox']; (iv) CENTRAL: ['bruxism' or 'tooth grinding' or 'tooth clenching'] AND ['botulinum' or 'botulinum toxin' or 'Botox']; (v) ClinicalTrials.gov: 'bruxism' AND 'botulinum'; (vi) SIGLE: ['bruxism' or 'tooth grinding' or 'tooth clenching'] AND ['botulinum' or 'botulinum toxin' or 'Botox']. The electronic search was performed from January 1990 to April 2011 and there was no language restriction.

Data collection, analysis and quality assessment

Data collection and analysis

The general data, including study design, participant information, follow-up period, and primary and secondary outcomes, were extracted and collected. The primary outcome included the decrease in frequency of bruxism events. Secondary outcomes included the decrease in pain scores, subjective evaluation of efficacy and sleep quality improvement. Any adverse effects noted in the included studies, either locally or systemically, were also extracted and collected. Originally, the collected data were analyzed in Review Manager 5 (http://ims.cochrane.org/revman/download).

Quality assessment
The strengths and weaknesses of all the included studies were assessed with reference to the Cochrane Review- ers’ Handbook. The main items included were as follows: (i) was the sequence generation adequate?; (ii) was the allocation adequately concealed?; (iii) was blinding performed in the study?; (iv) were incomplete outcome data adequately addressed?; (v) was the study free of selective outcome reporting?; (vi) was the study free of other apparent risk of bias?

RESULTS Literature

The procedures of the search strategy and selection are presented in Figure 1. We finally included four studies in this systematic review. Of these, two were random- ised controlled trials and two were controlled before- and-after studies. The details and quality assessment of the four studies are presented in Table 1 and Table 2, respectively.

Primary outcome

Comparison of bruxism frequency reduction between botulinum toxins and saline placebo
Of the four identified studies, only one, by Lee et al., a randomised controlled trial of 12 adults.
compared the effectiveness of botulinum toxins against placebo on the reduction in the frequency of
bruxism events after injection (4, 8 and 12 weeks after injection). Post-injection bruxism events
detected by electromyogram (EMG) were significantly less frequent in the botulinum group than in the
placebo group (Table 3).

Secondary outcomes
Of the four identified studies, those by Guarda-Nardini et al.13, Bolayir et al.14 and Sener et al.15
reported the effectiveness of botulinum toxins on pain improvement. Guarda-Nardini et al. conducted
a randomised controlled trial of 20 participants and compared the efficacy of botulinum toxins with
compared visual analog

Figure 1. Systematic search and selection strategy.

Table 1 General information on the four included studies

Safety
FU: follow-up; NS, not stated; RCT, randomised controlled trial; VAS, visual analog scale.

NS

Table 2 Quality assessment of the included studies

NS

Blinding?
Yes Unclear No
No

No adverse effects

Botulinum toxins for bruxism

Item
Study design Population

Treatment

Efficacy
6 + 6 (20–30 years) FU: 4, 8 and 12 weeks FU rate: 100%

Group 1: each masseter [80 U Dysport (0.8 mL)]

Group 2: each masseter (0.8 mL saline)

A significant decrease in bruxism frequency compared with saline group
10 + 10 (25–45 years) FU: 1 week, 1 and 6 months
FU rate: NS
Group 1: each masseter (30 U Botox); each anterior temporalis (20 U Botox)
Group 2: saline placebo

Significant decrease in pain on chewing and improvement in subjective efficacy compared with saline group
Controlled before-and-after study

13 (age range: NS) FU: 2, 4 and 6 months FU rate: NS

First stage (0–2 months): nocturnal oral splint for 2 months. Second stage (2–4 months): wash out period. Third stage (4–6 months): 60 U Botox into masseters Significant decrease in pain, sensitivity and weakness for both Botox and splint after treatment

The two are equally effective
Controlled before-and-after study

12 (18–35 years) FU: 1 and 3 months FU: NS

50 U Dysport into masseters

Subjectively reported less frequency of bruxism after injection

VAS pain scores decreased significantly after treatment

No adverse effects

Study
Adequate sequence generation?
Unclear Unclear No
No

Allocation concealment?
Unclear Unclear No
No

Incomplete outcome data addressed?
Yes Unclear Unclear Yes

Free of selective reporting?
Yes No No Yes

Free of other bias?
Yes No No No

Table 3 Comparison of effectiveness between botulinum toxins and placebo on bruxism events assessed through electromyogram (EMG)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>4 weeks after injection</th>
<th>8 weeks after injection</th>
<th>12 weeks after injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botulinum toxins (n)</td>
<td>6 6 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>0.59 (0.57) 1.33 (1.1) 1.7 (0.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline (n) 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>4.13 (1.31) 4.12 (0.89) 4.4 (1.52)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean difference
inverse variance, random, 95%

3.54 [1.94, 5.14] 2.79 [1.39, 4.19] 2.70 [1.39, 4.01]
Sener et al. conducted a two-
phase study and, during the two phases, the same 13 participants received botulinum toxin injections and oral splints sequentially. Pain levels were compared before and after each treatment, and pain level reductions were compared between botulinum toxin injections and oral splint.

Comparison of pain improvement between botulinum toxins and saline placebo
The study by Guarda-Nardini et al. reported pain levels at rest and on chewing assessed by VAS.
scores in the range 0–10. Pain reductions on chewing from baseline to the 6-month follow-up were significantly greater in the botulinum toxin group than in the saline placebo group (P < 0.05). However, pain reductions on chewing from baseline to 1 week or 1 month after injection, or at rest from baseline to 1 week, 1 month or 6 months after injection, showed no difference between the two groups.

Comparison of pain levels before and after botulinum toxin injections
reported the comparison of pain levels measured by VAS before and after botulinum
toxin injections. This study revealed that pain levels decreased significantly in both masseter muscles, 1 month and 3 months after botulinum toxin injections (P < 0.05).

Long et al.
Comparison of pain improvement between botulinum toxins and nocturnal oral splint
The study by Sener et al. reported that both botulinum toxins and nocturnal oral splint decreased
pain significantly from baseline, and that the two treatments were equally effective for bruxism.

Comparison of subjective evaluations of the effectiveness of botulinum toxins on bruxism
Of the four studies, those by Lee et al. and Guarda-Nardini et al. reported subjective evaluations of
the efficacy of botulinum toxin injections. However, they used different standards to evaluate the
employ a bruxism questionnaire, whereas Guarda-Nardini et al. used a
subjective efficacy scale (0, poor; 1, slight, 2, moderate; 3, good; 4, excellent). Thus, their results cannot be pooled, and were analyzed separately.
Lee et al. reported that the subjective assessment of efficacy did not differ between the botulinum
toxin group and the saline placebo group, 4, 8 or 12 weeks after the injections [P = 0.27, P = 0.26 and P
Guarda-Nardi et al. reported
that subjective assessment of efficacy did not differ between the botulinum toxin group and saline placebo group, 1 week and 1 month after injection, but was significantly higher in the botulinum toxin group than in the saline placebo group 6 months after injection.

Safety assessment of botulinum toxin injections
Of the four studies included, two (Guarda-Nardini et al. 13 and Sener et al. 15) did not report the adverse
Through an intensive literature search, we found a total of four studies evaluating the efficacy of botulinum toxins on bruxism. Of these, two were randomised controlled clinical trials and two were controlled before-and-after studies.
In contrast with placebo (saline), botulinum toxins were found to reduce significantly the frequency of
As bruxism events were detected through an objective method (EMG) in this study,
the results are convincing.
Another randomised controlled trial (Guarida-Nardi et al. 2013) reported that pain level reductions on
chewing after 6 months, assessed through a VAS score, were significantly greater in the botulinum injection group than in the placebo group (saline), indicative of the long-term pain improvement effects of botulinum toxin injections.
Compared with the pain levels before botulinum toxin injections, the study by Bolayir et al. revealed
that the pain levels assessed through a VAS score decreased significantly after botulinum injections. However, the results may suffer from bias because of the absence of controls.
In addition to botulinum, several modalities have been used for bruxism, including oral splint. One
study (Sener et al. 2015) revealed that botulinum toxins were equally effective as nocturnal oral splint,
which further justifies the clinical use of botulinum toxins. However, as this study compared the pain level reductions of botulinum toxins and oral splint in the same subjects in two sequential phases, bias also exists in this study. Therefore, further research is warranted on this specific topic.
Two studies (Lee et al. 12 and Guarda-Nardini et al. 13) reported the subjective evaluation of the
effectiveness of botulinum toxins on bruxism. Their results were divergent: subjective assessment did
not differ between the botulinum group and the placebo group in Lee et al. 12, whereas it was
significantly higher in the botulinum group than in the placebo group in
Guarda-Nardini et al. 13 This
disagreement may be a result of the different standards of subjective assessment and the longer follow-
up period in Guarda et al. Thus, botulinum may only have long-term effects on subjective
evaluation. Unfortunately, none of the studies reported on the improvement of sleep quality after botulinum injections.
The effects of botulinum toxins are transient and largely limited to the area of injection. A review by
Ihde and Konstantinovic has indicated that the most common adverse effects of botulinum toxins are
localised effects, e.g. tenderness and mild skin reaction at the injection site, systemic effects, e.g. headache and reversible denervation atrophy, and specific effects, including dysphonia, dysphagia and dry mouth. However, the adverse effects reported in the
Bolayir et al. reported no post-injection effects, either locally or systemically.
Sleep quality improvement

adverse

Unfortunately, none of the identified studies reported on this specific topic. Thus, more research is needed to investigate the effects of botulinum toxin injections on sleep quality improvement.

DISCUSSION
Botulinum toxins, purified exotoxins of Clostridium botulinum, have long been used for numerous
neuro-muscular disorders. These toxins can inhibit neuromuscular transmission, justifying their
clinical application in the treatment of bruxism, as recent evidence has indicated that bruxism is caused
by centrally mediated high levels of motor activity in jaw muscles.
above-mentioned review were most common in patients receiving high doses (>100 U), and almost all the adverse effects were from indications for uses other than bruxism, e.g. cervical dystonia. In our review, the dosages in all the four included studies were no higher than 100 U. In addition, only two studies investigated the adverse effects of botulinum injections, but neither reported post-injection adverse effects, either locally or systemically. In the literature, two studies have reported that
botulinum toxins used in bruxism can cause dysphagia or mild soreness at the injection site and
temporal drooling. However, the patients who suffered from these adverse effects in the two studies
either received a large dosage (>100 U) or had a condition complicated by other medical problems. Thus, botulinum toxin injections at a dosage below 100 U in the masseter or temporalis muscles in otherwise healthy patients are safe.

Taken together, botulinum toxin injections can reduce the frequency of bruxism events, decrease bruxism-induced pain levels and satisfy patients’ self-assessment of the effectiveness on bruxism. Botulinum toxin injections are equally as effective as nocturnal oral splint for bruxism. Furthermore, botulinum toxin injections at a dosage below 100 U of the masseter or temporalis muscles for otherwise healthy patients are safe. However, only two of the studies – randomised controlled trials – were of high quality and no research has been performed on the effects of botulinum on sleep quality improvement. Therefore, further studies, especially randomised controlled trials of high quality, directed towards the comparison of botulinum toxin injections and oral nocturnal splint, and the effect of botulinum on sleep quality, are urgently needed to explore the advantages of botulinum toxin injections and to promote their wider clinical application.

Acknowledgement

This work was supported by NSFC (National Natural Science Foundation of China), No. 81070858. We sincerely thank Professor Zongdao Shi for critical review of the manuscript.

Declaration of interests

None declared.

REFERENCES

Correspondence to: Professor Wenli Lai, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China. Email: wenlilai@hotmail.com